Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Sci Immunol ; 9(94): eadi1023, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608038

RESUMO

The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.


Assuntos
Coreia , Diferenciação Celular , Citocinas , Células Dendríticas
2.
iScience ; 27(4): 109502, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38591009

RESUMO

Constitutive explorations indicate a correlation between circular RNAs (circRNAs) and cardiovascular diseases. However, the involvement of circRNAs in endothelial recuperation and in-stent restenosis (ISR) remains underexplored. CircTMEM165 has first been reported to be highly expressed in hypoxic human umbilical vein endothelial cells (HUVECs). Here, we identified that circTMEM165 was downregulated in ISR patients, inversely correlating with ISR severity. Functionally, circTMEM165 was found to be abundant in endothelial cells, inhibiting inflammation, and adhesion. Particularly, we first observed that circTMEM165 could alleviate HUVECs apoptosis and mitochondrial fission induced by lipopolysaccharide (LPS). Mechanistically, circTMEM165, as a miR-192-3p sponge, enhancing SCP2 expression, which serves as a critical regulator of HUVECs biological functions. Moreover, in vivo, circTMEM165 attenuated intimal hyperplasia and facilitated repair following classic rat carotid artery balloon injury model. These findings investigated the circTMEM165-miR-192-3p-SCP2 axis as a critical determinant of endothelial health and a potential biomarker and therapeutic target for vascular disorders.

3.
Small ; : e2400149, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528389

RESUMO

Layered Na2FePO4F (NFPF) cathode material has received widespread attention due to its green nontoxicity, abundant raw materials, and low cost. However, its poor inherent electronic conductivity and sluggish sodium ion transportation seriously impede its capacity delivery and cycling stability. In this work, NFPF by Ti doping and conformal carbon layer coating via solid-state reaction is modified. The results of experimental study and density functional theory calculations reveal that Ti doping enhances intrinsic conductivity, accelerates Na-ion transport, and generates more Na-ion storage sites, and pyrolytic carbon from polyvinylpyrrolidone (PVP) uniformly coated on the NFPF surface improves the surface/interface conductivity and suppresses the side reactions. Under the combined effect of Ti doping and carbon coating, the optimized NFPF (marked as 5T-NF@C) exhibits excellent electrochemical performance, with a high capacity of 108.4 mAh g-1 at 0.2C, a considerable capacity of 80.0 mAh g-1 even at high current density of 10C, and a high capacity retention rate of 81.8% after 2000 cycles at 10C. When assembled into a full cell with a hard carbon anode, 5T-NF@C also show good applicability. This work indicates that co-modification of Ti doping and carbon coating makes NFPF achieve high rate and long cycle performance for sodium-ion batteries.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38547512

RESUMO

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. CVD and kidney disease are closely related, with kidney injury increasing CVD mortality. The pathogenesis of cardiovascular and renal diseases involves complex and diverse interactions between multiple extracellular and intracellular signaling molecules, among which transient receptor potential vanilloid 1 (TRPV1)/ transient receptor potential ankyrin 1(TRPA1) channels have received increasing attention. TRPV1 belongs to the vanilloid receptor subtype family of transient receptor potential (TRP) ion channels, and TRPA1 belongs to the TRP channel superfamily. TRPV1/TRPA1 are jointly involved in the management of cardiovascular and renal diseases, and play important roles in regulating vascular tension, promoting angiogenesis, anti-fibrosis, anti-inflammation, and anti-oxidation. The mechanism of TRPV1 / TRPA1 is mainly related to regulation of intracellular calcium influx and release of nitric oxide (NO) and calcitonin gene-related peptide (CGRP). Therefore, this study takes TRPV1 / TRPA1 channel as the research object, analyzes and summarizes the process and mechanism of TRPV1 / TRPA1 affecting cardiovascular and renal diseases, and lays a foundation for the treatment of cardio-renal diseases.

5.
Crit Rev Oncol Hematol ; 197: 104330, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38556071

RESUMO

Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.

6.
Front Immunol ; 15: 1335519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515760

RESUMO

Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Ubiquitina , Ligases , RNA não Traduzido/genética , MicroRNAs/genética , Complexo de Endopeptidases do Proteassoma
7.
PLoS One ; 19(2): e0298447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359008

RESUMO

Rheumatoid arthritis (RA) and primary Sjögren's syndrome (pSS) are the most common systemic autoimmune diseases, and they are increasingly being recognized as occurring in the same patient population. These two diseases share several clinical features and laboratory parameters, but the exact mechanism of their co-pathogenesis remains unclear. The intention of this study was to investigate the common molecular mechanisms involved in RA and pSS using integrated bioinformatic analysis. RNA-seq data for RA and pSS were picked up from the Gene Expression Omnibus (GEO) database. Co-expression genes linked with RA and pSS were recognized using weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis. Then, we screened two public disease-gene interaction databases (GeneCards and Comparative Toxicogenomics Database) for common targets associated with RA and pSS. The DGIdb database was used to predict therapeutic drugs for RA and pSS. The Human microRNA Disease Database (HMDD) was used to screen out the common microRNAs associated with RA and pSS. Finally, a common miRNA-gene network was created using Cytoscape. Four hub genes (CXCL10, GZMA, ITGA4, and PSMB9) were obtained from the intersection of common genes from WGCNA, differential gene analysis and public databases. Twenty-four drugs corresponding to hub gene targets were predicted in the DGIdb database. Among the 24 drugs, five drugs had already been reported for the treatment of RA and pSS. Other drugs, such as bortezomib, carfilzomib, oprozomib, cyclosporine and zidovudine, may be ideal drugs for the future treatment of RA patients with pSS. According to the miRNA-gene network, hsa-mir-21 may play a significant role in the mechanisms shared by RA and pSS. In conclusion, we identified commom targets as potential biomarkers in RA and pSS from publicly available databases and predicted potential drugs based on the targets. A new understanding of the molecular mechanisms associated with RA and pSS is provided according to the miRNA-gene network.


Assuntos
Artrite Reumatoide , MicroRNAs , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , MicroRNAs/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
8.
J Pharm Sci ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38417790

RESUMO

Accounting for variability in plasma protein binding of drugs is an essential input to physiologically-based pharmacokinetic (PBPK) models of special populations. Prediction of fraction unbound in plasma (fu) in such populations typically considers changes in plasma protein concentration while assuming that the binding affinity remains unchanged. A good correlation between predicted vs observed fu data reported for various drugs in a given special population is often used as a justification for such predictive methods. However, none of these analyses evaluated the prediction of the fold-change in fu in special populations relative to the reference population. This would be a more appropriate assessment of the predictivity, analogous to drug-drug interactions. In this study, predictive performance of the single protein binding model was assessed by predicting fu for alpha-1-acid glycoprotein and albumin bound drugs in hepatic impairment, renal impairment, paediatric, elderly, patients with inflammatory disease, and in different ethnic groups for a dataset of >200 drugs. For albumin models, the concordance correlation coefficients for predicted fu were >0.90 for 16 out of 17 populations with sub-groups, indicating strong agreement between predicted and observed values. In contrast, concordance correlation coefficients for predicted fold-change in fu for the same dataset were <0.38 for all populations and sub-groups. Trends were similar for alpha-1-acid glycoprotein models. Accordingly, the predictions of fu solely based on changes in protein concentrations in plasma cannot explain the observed values in some special populations. We recommend further consideration of the impact of changes in special populations to endogenous substances that competitively bind to plasma proteins, and changes in albumin structure due to posttranslational modifications. PBPK models of special populations for highly bound drugs should preferably use measured fu data to ensure reliable prediction of drug exposure or compare predicted unbound drug exposure between populations knowing that these will not be sensitive to changes in fu.

9.
Head Neck ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38328961

RESUMO

BACKGROUND: Segmental bone defects of the mandible result in the complete loss of the affected region. We had incorporated the pressure-reducing device (PRD) designs into the customized mandible prostheses (CMP) and conducted a clinical trial to evaluate this approach. METHODS: Seven patients were enrolled in this study. We examined the association among the history of radiotherapy, the number of CMP regions, the number of chin regions involved, and CMP exposure. RESULTS: We included five men and two women with an average age of 55 years. We excised tumors with an average weight of 147.8 g and the average weight of the CMP was 68.5 g. No significant difference between the two weights was noted (p = 0.3882). Three patients received temporary dentures and the CMP remained stable in all patients. CONCLUSION: The use of PRD in CMP may address the previous challenges associated with CMP, but further research is necessary.

10.
Small ; : e2306257, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377302

RESUMO

Due to the disadvantages of poor targeting, slow action, and low effectiveness of current commonly used cancer treatments, including surgery, chemotherapy, and radiotherapy, researchers have turned to DNA as a biomaterial for constructing drug delivery nanocarriers. DNA is favored for its biocompatibility and programmability. In order to overcome the limitations associated with traditional drug delivery systems (DDSs), researchers have developed smart-responsive DNA DDSs that can control drug release in response to specific physical or chemical stimuli at targeted sites. In this review, a summary of multiple targeted ligand structures is provided, various shapes of stable DNA nanomaterials, and different stimuli-responsive drug release strategies in DNA DDSs. Specifically, targeted cell recognition, in vivo stable transport, and controlled drug release of smart DDSs are focused. Finally, the further development prospects and challenges of clinical application of DNA nanomaterials in the field of smart drug delivery are discussed. The objective of this review is to enhance researchers' comprehension regarding the potential application of DNA nanomaterials in precision drug delivery, with the aim of expediting the clinical implementation of intelligent DDSs.

11.
Mar Pollut Bull ; 200: 116095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325205

RESUMO

An integrated observation of NOx that included coastal cities and oceanic cruises covering the Qingdao coastal waters sites (QDCW) and the Yellow Sea and East China Sea sites (YECS) was conducted in spring. The average concentrations of the coastal cities, the QDCW, and the YECS were 5.4 ± 4.1, 4.2 ± 3.5, and 2.9 ± 6.8 ppb for NO while 18.5 ± 7.2, 9.4 ± 5.2, and 4.9 ± 6.4 ppb for NO2, depicting lowest levels in the open seas. Atmospheric NO and NO2 showed similar spatial variations over the seas, the stations where the air masses originated from land or nearshore regions showed higher levels, but the decisive influencing factors were not the same in the different study areas. The calculated NOx flux value in the YECS (-8.7 × 10-17 mol N cm-2) indicated that the sea surface was a net sink of atmospheric NOx.


Assuntos
Poluentes Atmosféricos , Água do Mar , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio , Monitoramento Ambiental , Oceanos e Mares , Óxidos de Nitrogênio , China
12.
J Dent Sci ; 19(1): 502-514, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303793

RESUMO

Background/purpose: Segmental body defects of the mandible result in the complete loss of the affected region. In our previous study, we investigated the clinical applicability of a customized mandible prosthesis (CMP) with a pressure-reducing device (PRD) in an animal study. In this study, we further incorporated dental implants into the CMP and explored the use of dental implant PRD (iPRD) designs. Materials and methods: By employing a finite element analysis approach, we created 4 types of CMP: CMP, CMP with iPRD, CMP-PRD, and CMP-PRD with iPRD. We developed 2 parameters for the iPRD: cone length (CL) in the upper part and spring pitch (SP) in the lower part. Using the response surface methodology (RSM), we determined the most suitable structural assignment for the iPRD. Results: Our results indicate that CMP-PRD had the highest von Mises stress value for the entire assembly (1076.26 MPa). For retentive screws and abutments, CMP with iPRD had the highest von Mises stress value (319.97 and 452.78 MPa, respectively). CMP-PRD had the highest principal stress (131.66 MPa) in the anterior mandible. The iPRD reduced principal stress in both the anterior and posterior mandible. Using the RSM, we generated 25 groups for comparison to achieve the most favorable results for the iPRD and we might suggest the CL to 12 mm and the SP to 0.4 mm in the further clinical trials. Conclusion: Use of the PRD and iPRD in CMP may resolve the challenges associated with CMP, thereby promoting its usage in clinical practice.

13.
Toxicol Appl Pharmacol ; 483: 116839, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38290667

RESUMO

Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.


Assuntos
Abietanos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Actinas , Proteínas rho de Ligação ao GTP/farmacologia , Proliferação de Células , Carcinoma Hepatocelular/tratamento farmacológico , Citoesqueleto , Citoesqueleto de Actina , Linhagem Celular Tumoral , Apoptose
14.
Clin Chim Acta ; 554: 117785, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228224

RESUMO

BACKGROUND: The study aimed to investigate the diagnostic value of lupus-related pattern recognition receptors (PRRs) genes in peripheral blood mononuclear cells (PBMCs) and monocytes (MONs) for lupus nephritis (LN). METHODS: PBMCs were isolated from a cohort with 37 LN patients and 39 healthy controls (HCs), and MONs were derived from another cohort with 70 LN patients and 66 HCs. Q-PCR was used to measure the mRNA levels of CGAS, IFNB1, AIM2, IL1Β, NLRC4, NLRP3, NLRP12 and ZBP1 in the PBMCs and MONs. The Mann-Whitney U test was used to compare the data in LN patients and HCs. Eleven GEO datasets of SLE/LN were used to perform differentially expressed genes (DEGs) analysis to these PRR genes. Receiver operating characteristic (ROC) curve analysis was employed to assess the performance of individual genes or the disease prediction model established by combining multiple genes in LN diagnosis. Spearman correlation method was done to analyze the correlation between these PRRs and other clinical characteristics. RESULTS: The mRNA levels of five genes (AIM2, NLRC4, IL1B, NLRP12 and ZBP1) in PBMCs, and seven genes (CGAS, IFNB1, AIM2, IL1B, NLRP3, NLRP12 and ZBP1) in MONs of LN patients were significantly higher than those of HCs (P < 0.05). DEGs analysis based on the GEO datasets showed that ZBP1, AIM2 and IL1B were significantly increased in several datasets. The ROC curve analysis indicated that the area under curve (AUC) of the LN prediction models derived from PBMCs or MONs were 0.82 or 0.91 respectively. In addition, the expression levels of these PRRs were correlated with other clinical features in LN patients, including Anti-Sm, ESR, serum Cr, and C3. CONCLUSION: Our study suggests that these lupus-related PRRs might be served as potential biomarkers of LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Leucócitos Mononucleares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Monócitos/metabolismo , Biomarcadores , RNA Mensageiro/genética , Nucleotidiltransferases , Curva ROC
15.
Int Immunopharmacol ; 127: 111345, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38086266

RESUMO

Triptolide (TPT) is widely used in the treatment of rheumatoid arthritis (RA). However, its regulatory mechanisms are not fully understood. This study demonstrated that Myeloid-derived suppressor cells (MDSCs) were expanded in both RA patients and arthritic mice. The frequency of MDSCs was correlated with RA disease severity and T helper 17 (Th17) responses. MDSCs from RA patients promoted the polarization of Th17 cells in vitro, which could be substantially attenuated by blocking arginase-1 (Arg-1). TPT inhibited the differentiation of MDSCs, particularly the monocytic MDSCs (M-MDSCs) subsets, as well as the expression of Arg-1 in a dose dependent manner. Alongside, TPT treatment reduced the potential of MDSCs to promote the polarization of IL-17+ T cell in vitro. Consistently, TPT immunotherapy alleviated adjuvant-induced arthritis (AIA) in a mice model, and reduced the frequency of MDSCs, M-MDSCs and IL-17+ T cells simultaneously. The presented data suggest a pathogenic role of MDSCs in RA and may function as a novel and effective therapeutic target for TPT in RA.


Assuntos
Artrite Reumatoide , Diterpenos , Células Supressoras Mieloides , Fenantrenos , Humanos , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Interleucina-17/metabolismo , Arginase/metabolismo , Artrite Reumatoide/metabolismo , Compostos de Epóxi
16.
Exp Eye Res ; 239: 109759, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142763

RESUMO

Early diagnosis is important for improving the outcomes of keratoconus (KC). Stable expression and a closed-loop structure of circular RNAs (circRNAs) make them ideal for the diagnosis and treatment of diseases. However, the expression pattern and potential function of circRNAs in KC is not studied yet. Hence, this study explored the circRNA expression profile of KC corneas through transcriptome sequencing and circRNA expression profile analysis. The diagnostic potential of blood circRNAs for KC was explored by analysing the circRNAs' expression levels of fifty paired blood samples from patients with KC and normal controls. The results showed that 107 significantly upregulated and 145 significantly downregulated circRNAs (|fold change| ≥ 2.0, p-value <0.05) were identified in KC tissues. Eight top differently expressed circRNAs were further validated in more cornea samples. Among them, five circRNAs expressed in peripheral blood, and four circRNAs (circ_0006156, circ_0006117, circ_0000284 and circ_0001801) showed significant downregulation in KC patients' peripheral blood too. The blood circ_0000284 expression levels of early, moderate, and advanced KC patients both were significantly lower than the controls. The blood circ_0006117 expression levels present a positive correlation with corrected distance visual acuity values, and a negative correlation with back elevation values of KC eyes. Notably, the expression levels of these circRNAs distinguished KC patients from their healthy counterparts, with the area under the curve (AUC) of circ_0000284, circ_0001801, and circ_0006117 being 0.7306, 0.6871 and 0.6701, respectively. Further, the AUC value for five circRNAs under the logistic regression model was 0.8203, indicating that they can function as effective biomarkers for the KC diagnostics. In conclusion, the expression of circRNAs showed a relationship with KC, with four significantly differentially expressed circRNAs demonstrating potential as biomarkers for the disease.


Assuntos
Ceratocone , RNA Circular , Humanos , RNA Circular/genética , Ceratocone/diagnóstico , Ceratocone/genética , Biomarcadores/metabolismo , Regulação para Baixo , Área Sob a Curva , RNA/genética , RNA/metabolismo
17.
Aging (Albany NY) ; 15(23): 13799-13821, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38054820

RESUMO

Colorectal cancer (CRC) is a malignancy that is both highly lethal and heterogeneous. Although the correlation between intra-tumoral genetic and functional heterogeneity and cancer clinical prognosis is well-established, the underlying mechanism in CRC remains inadequately understood. Utilizing scRNA-seq data from GEO database, we re-isolated distinct subsets of cells, constructed a CRC tumor-related cell differentiation trajectory, and conducted cell-cell communication analysis to investigate potential interactions across cell clusters. A prognostic model was built by integrating scRNA-seq results with TCGA bulk RNA-seq data through univariate, LASSO, and multivariate Cox regression analyses. Eleven distinct cell types were identified, with Epithelial cells, Fibroblasts, and Mast cells exhibiting significant differences between CRC and healthy controls. T cells were observed to engage in extensive interactions with other cell types. Utilizing the 741 signature genes, prognostic risk score model was constructed. Patients with high-risk scores exhibited a significant correlation with unfavorable survival outcomes, high-stage tumors, metastasis, and low responsiveness to chemotherapy. The model demonstrated a strong predictive performance across five validation cohorts. Our investigation involved an analysis of the cellular composition and interactions of infiltrates within the microenvironment, and we developed a prognostic model. This model provides valuable insights into the prognosis and therapeutic evaluation of CRC.


Assuntos
Neoplasias Colorretais , Análise da Expressão Gênica de Célula Única , Humanos , RNA-Seq , Microambiente Tumoral/genética , Comunicação Celular , Neoplasias Colorretais/genética , Prognóstico
18.
Diabetes Metab Syndr Obes ; 16: 3937-3951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077483

RESUMO

Introduction: Circular RNA (circRNAs) are a type of non-coding RNA (ncRNAs) with a wealth of functions. Recently, circRNAs have been identified as important regulators of diabetic kidney disease (DKD), owing to their stability and enrichment in exosomes. However, the role of circRNAs in exosomes of tubular epithelial cells in DKD development has not been fully elucidated. Methods: In our study, microarray technology was used to analyze circRNA expression in cell supernatant exosomes isolated from HK-2 cells with or without high glucose (HG) treatment. The small interfering RNAs (siRNA) and plasmid overexpression were used to validate functions of differentially expressed circRNAs. Results: We found that exosome concentration was higher in HG-stimulated HK-2 cells than in controls. A total of 235 circRNAs were significantly increased and 458 circRNAs were significantly decreased in the exosomes of the HG group. In parallel with the microarray data, the qPCR results showed that the expression of circ_0009885, circ_0043753, and circ_0011760 increased, and the expression of circ_0032872, circ_0004716, and circ_0009445 decreased in the HG group. Rescue experiments showed that the effects of high glucose on regulation of CCL2, IL6, fibronetin, n cadherin, e cadherin and epcam expression can be reversed by inhibiting or overexpressing these circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses indicated that circRNA parental genes are associated with glucose metabolism, lipid metabolism, and inflammatory processes, which are important in DKD development. Further analysis of circRNA/miRNA interactions indicated that 152 differentially expressed circRNAs with fold change (FC) ≥1.5 could be paired with 43 differentially expressed miRNAs, which are associated with diabetes or DKD. Discussion: Our results indicate that exosomal circRNAs may be promising diagnostic and therapeutic biomarkers, and may play a critical role in the progression of DKD.

19.
Sci Rep ; 13(1): 22055, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087043

RESUMO

Analyzing the influence of the bed allocation and utilization efficiency in healthcare institutions on the isolation proportion of Multidrug-resistant organisms (MDROs) to provide data to support prevention and control of MDROs. In this study, the provincial panel data from 2014 to 2020 in China on health resource indicators, including the number of beds per 1,000 population, hospital bed utilization rate, and average hospital stay from 2014 to 2020 in China were used to analyze the relationship between bed allocation or utilization efficiency and MDROs by the panel data quantile regression model. It was shown that the number of beds per 1,000 population had a negative effect on the isolation proportion of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, vancomycin-resistant Enterococcus faecium, penicillin-resistant Streptococcus pneumoniae, methicillin-resistant coagulase-negative Staphylococcus, and cefotaxime or ceftriaxone resistant Escherichia coli (regression coefficient < 0, P < 0.05). The utilization rate of hospital bed had a positive effect on the isolation proportion of methicillin-resistant Staphylococcus aureus, methicillin-resistant coagulase-negative Staphylococcus, vancomycin-resistant Enterococcus faecium, penicillin-resistant Streptococcus pneumoniae, cefotaxime or ceftriaxone resistant Escherichia coli, carbapenem-resistant Escherichia coli, cefotaxime or ceftriaxone resistant Klebsiella pneumoniae, carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii (regression coefficient > 0, P < 0.05). The average hospital stay had a positive effect on the isolation proportion for several antibiotic-resistant organisms, including methicillin-resistant Staphylococcus aureus, methicillin-resistant coagulase-negative Staphylococcus, vancomycin-resistant Enterococcus faecalis, vancomycin-resistant Enterococcus faecium, penicillin-resistant Streptococcus pneumoniae, cefotaxime or ceftriaxone resistant Escherichia coli, carbapenem-resistant Escherichia coli, quinolone-resistant Escherichia coli, cefotaxime or ceftriaxone resistant Klebsiella pneumoniae, carbapenem-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii (regression coefficient > 0, P < 0.05). Bed allocation and utilization efficiency in healthcare institutions may affect the isolation proportion of MDROs in varying degrees.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Farmacorresistência Bacteriana Múltipla , Vancomicina/farmacologia , Ceftriaxona/farmacologia , Coagulase , Antibacterianos/farmacologia , Cefotaxima/farmacologia , Carbapenêmicos/farmacologia , Escherichia coli , Atenção à Saúde , Penicilinas/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
20.
Cancer Cell Int ; 23(1): 257, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919747

RESUMO

BACKGROUND: Cancer cells promote glycolysis, which supports rapid cell growth and proliferation. Phosphofructokinase-fructose bisphosphatases (PFKFBs), a family of bidirectional glycolytic enzymes, play key roles in the regulation of glycolysis in many types of cancer. However, their roles in oral squamous cell carcinoma (OSCC), the most common type of oral cancer, are still unknown. METHODS: We compared the gene expression levels of PFKFB family members and analyzed their clinical significance in oral cancer patients, whose clinical data were obtained the Cancer Genome Atlas database. Moreover, real-time quantitative polymerase chain reaction, western blotting, assays for cell viability, cell cycle, cell migration and viability of cell spheroid were performed in scramble and PFKFB-silenced cells. RESULTS: We discovered that PFKFB3 expression in tumor tissues was slightly higher than that in tumor adjacent normal tissues but that PFKFB4 expression was significantly higher in the tumor tissues of oral cancer patients. High PFKFB3 and PFKFB4 expression had different effects on the prognosis of oral cancer patients with different clinicopathological outcomes. Our data showed that PFKFB3 and PFKFB4 play different roles; PFKFB3 is involved in cell viability, G2/M cell cycle progression, invasion, and migration, whereas PFKFB4 is involved in the drug resistance and cancer stemness of OSCC cells. Furthermore, oral cancer patients with co-expressions of PFKFB3/cell cycle or EMT markers and PFKFB4/stemness markers had poor prognosis. CONCLUSIONS: PFKFB3 and PFKFB4 play different biological roles in OSCC cells, which implying that they might be potential prognostic biomarkers for OSCC patients with certain clinicopathological outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...